Лабораторная работа №6 «Измерение ускорения свободного падения при помощи математического маятника».

<u>**Цель:**</u> измерение ускорения свободного падения с использованием формулы Гюйгенса для расчета периода колебаний математического маятника.

Оборудование: математический маятник, линейка, секундомер.

Теоретическая часть:

В работе используется простейший маятниковый прибор — шарик на нити (математический маятник). При малых размерах шарика по сравнению с длиной нити и небольших отклонениях от положения равновесия период колебания равен

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Для увеличения точности измерения периода нужно измерить время t достаточно большого числа N полных колебаний маятника. Тогда период

$$T=t/N$$

И ускорение свободного падения может быть вычислено по формуле

$$g=\frac{4\pi^2 l\cdot N^2}{t^2}$$

Порядок выполнения работы:

- 1. Поставьте штатив с математическим маятником на край стола так, чтобы зажим штатива выступал за край стола. Измерьте длину нити маятника. Результат измерения занесите в таблицу.
- 2. Отведите шарик в сторону на 5 10 см и отпустите его.
- 3. Измерьте 3 раза время 10 колебаний маятника. Результаты измерений занесите в таблицу (в таблице уже записаны тестовые результаты измерений).
- 4. Для каждого значения t вычислите значение g по расчетной формуле. Вычислите среднее значение g_{cp} . Результаты вычислений занесите в таблицу.
- 5. Для каждого значения g вычислите абсолютное отклонение от среднего значения: $\Delta g = |g_{cp} g|$ и среднее значение Δg_{cp} (абсолютную погрешность). Результаты вычислений занесите в таблицу.
- 6. Вычислите относительную погрешность измерения ускорения свободного падения: $\epsilon = 100*\Delta g_{cp}/g_{cp}\;$ и запишите результат вычисления в таблицу.
- 7. Запишите вывод полученное значение ускорения свободного падения в виде: $g = g_{cp} \pm \Delta g_{cp} \text{ м/c}^2$ и сравните его с известным значением (9,81 м/с²).

Таблица измерений и вычислений:

№ опыта	L, M	n	t, c	$g, M/c^2$	Δg , M/c^2	ε, %
1			10,84			
2	0,3	10	11,25			
3			11,05			
Среднее:						

- **Контрольные вопросы:**1. Одинаково ли ускорение свободного падения на полюсе Земли и на ее экваторе? Ответ обоснуйте.
- 2. Можно ли измерить ускорение свободного падения с помощью математического маятника в условиях невесомости? Ответ обоснуйте.